
Ii, D-OIN 990 INSTITUT NATIONAL DE RECHERCHE D-INFORMATIQUE ET D'AU--ETC F/6 9/2
PROGRAMMING ENVIRONMENTS BASED ON STRUCTURED EDITORS: THE MENTO--ETC(U)

1 JUL 80 V DONZEAU-GOUGE, G HUET. G KAHN
UNCLAS IIED A INRII-26 NL

IIIImI-
'Eu...D

1.2L5 1. n1.6

MICR(COPY RI SO M11ON US181AR
WA!.k A; Il t

r -- -.

4, 7 Rapp1'1s deC RechcrJi-J---

No 26

PROGRAMMING ENVIRONMENTS
BASED ON

STRUCTURED EDITORS:
THE MENTOR EXPERIENCE

Cbpj available to DTIC does not
permit fully legible reproduction

Vronique DONZEAU -GOUGE

11 1LI U t atinalG~rard HUET
4 deRechrcheGilles KAHN

en InormaiqueBernard LANG

DTC..
and~MA sae S 21982.Roquncur I This domiment has been approved

F**1r pnblic releasead ae its

-Fac .ibution is unlimited. A

& 6.954 0 20Juillet 1980

.1

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY
PRACTICABLE. THE COPY FURNISHED
TO DTIC CONTAINED A SIGNIFICANT
NUMBER OF PAGES WhiCH DO NOT
REPRODUCE LEGIBLY.

PROGRAMMING ENVIRONMENTS BASED ON STRUCTURED EDITORS

THE MENTOR EXPERIENCE

Vgronique DONZEAU-GOUGE, Gdrard HUET, Gilles KAHN and Bernard LANG

Rfsum

Nous analysons dans cette note l'expgrience acquise avec le systame

de manipulation de programmes MENTOR, en mettant l'accent sur les points

suivants

- les principales d6cisions prises lors de la conception de MENTOR ;

- notre experience dans la construction et 1'utilisation d'un

environnement de programmation PASCAL construit A partir de

MENTOR ;

- notre conception de ce que devrait tre un environnement de

programmation complet.

Abstract

We discuss in this note our experience with '!,i? MENTOR program

manipulation system, from the following points of vie..

>- the main design decisions'-w made in MENTOR

Sour experience with building and using a PASCAL programming

environment based on MENTOR ;

- our -vision of a complete programming environment.

Programming Environments Based aw Structmud Fditome
The MENTOR Experience

Vironique Donseau-Gouge, Giard Duet, Giles Kahn and Bernard Lan

Abstract

We discuss in this note our experience with the MENTOR program manipulation
system, from the following points of view:

* The main design decisions we made in MENTOR;
9 Our experience with building and using a PASCAL programming environment

based on MENTOR;
e Our vision of a complete programming environment.

1. A MENTOR primer

MENTOR is a processor designed to manipulate structured dats. This data is
represented as operator-operand trees, generally called abstract syntax trees. MENTOR
is driven by the tree manipulation language MENTOL.

1.1 Abstract Syntax

Abstract syntax trees are structured as sorted algebras; .for a given language, we
declare a set of sorts, and a set of operators with sorted operands. Operators may be
declared with a fixed arity, or may be associative operators with a variable number of
arguments, used to represent lists. We must also specify a parser, which, given a sort,
maps a concrete syntax string into the corresponding abstract syntax tree, and some
standard inverse mapping, the prettyprinting unparser.

For instance, in MENTOR-PASCAL, typical sorts are esp, slat, w.rbl, ident, conet,
fexp, Isgtf. Every meaningful PASCAL construct corresponds to an operator. Typical
operators are if, ass, call, istat, gtr, mult, index, with sorts as follows:

e if: ezpX stat X tat--,stat.
e ass: varblXezp-+ tat.
* call: ident X lezp-,stat.
q Istat: sttXetat X... Xtat-,ltat.
* lexp: ezpXezpX... X ezp-, Imp.
* gtr: ep X ezp-ezp.
• mult: ezpXezp-.ezp.
e index: ident X oezp-. ezp.

Also, all identifiers and constants are nullary operators, of sort respectively ident
and const. Finally, our sorts are ordered; for instance, identCvarblEezp, censtEep
and IstaiCstat. In any argument place of sort o, all operators returning sort w' C a

re authorized.
Arc er , _'W:or

Example
The following PASCAL program: J .' . .

I to y .

*" , , 'hdS

If X>O then P(XACY.ZI)
elseo begin

Y:=Y62;
X:=O
end

parnes into (and is the unparsing of) the following abstract syntax tree:

/ /

0 0 P iUp ass apt

x Inex Y Mt x o

Y 2
Y z

1.2 MENTOL, a tree manipulation language

The user communicates with MENTOR through an interpreter for a specialised
tree manipulation language, MENTOL. Values in MENTOL are abstract syntax trees
(abbreviated ast from now on) and locations in these trees , abbreviated le. MENTOL
commands are themselves ast's in MENTOR-MENTOL. MENTOL variables, called
markers, may be assigned lots. A loc expression is obtained by compoting a base marker
with displacement operators such as U,LR for up,left,right, or Sn, with n an integer, for
n-th son. For instance, if mark"r OTOP marks the top of the above PASCAL tree, OTOP
S2 Si marks the location of identifier P. The current marker. OK, may be abbreviated
by the empty string for convenience. The MENTOL assignment statement, of the form
locl:loc2, is used to move around in trees, and remember places. For instance, :OTOP
82 Si would assign the current marker to the location of P in the tree above.

The command lot Pn prints on the console the result of unparsing the ast at lot,
down to a level of detail specified by integer n. For instance, OTOP P2 would print:

If 9 then # oleo ...

I Note that list nodes are abbreviated by and other nodes by The command

OTOP P3 would give you some more detail:

2

If X>O then P(X,ArY.ZJ)
elso begin

I t #;#
end

The standard prettyprinting effected by MENTOR puts PASCAL reserved words
in lower case, identifiers in upper case, and indicates the tree structure by indentation.
When the level of detail is unspecified, you get a standard abbreviation that in most
cases fits in one screen. For instance, OTOP P would produce the text above in full.
The reverse operation of P is &, which is an expression denoting the result of parsing a
string of characters read on the input device.

An essential feature of MENTOL is pattern-matching. A pattern or schema, is any
ast containing special terminal nodes called metavariables. A schema matches ary tree
which is an instance of the pattern, replacing metavariables by approp-iate subtrees. A
given metavariable may appear only once in a given pattern. Metavariables are unparsed
as special identifiets, whose name starts with a dollar sign. Schemas may be constructed
by commands, or may be input through the parser. When the syntax tables for a
given language are leaded, MENTOR constructs a set of predefined schemas, one for
each operator. These elementary schemas consist of just the given operator, applied
to metavariables; they are accessible through a marker named by the operator. For
instance, in MENTOR-PASCAL, we would have:

?OGTR PI $CAP-1)SLXP2

The find expression toe F pat denotes the first location in the subtee marked by
lec which is an instance of the pattern pat (assuming preorder traversal.) If the subtree
does not contain any such instance, the special value fat is returned. Another find
expression, with F replaced by FF, does not limit the search to the subtree marked
by lec; that is, the search is continued in preorder beyond loc t:-is i. thie search one
ordinarily does in the listing of a program, starting from a given point.) When pattern-
matching is successful, the markers with same name as the metayariables of the schema
are assigned to the corresponding location in the object tree. For instance, with the
above example:

?@TOP F GTt P,
X>o
xOU@XP1 F"?

Let us now explain briefly the main commands and cont.ro! 6'.1,.s-- i.-i MEKTTOL.
When a lee ezpre.sion is used ae a command, it abbreviates the op.at.:,., -F .gning to
the base marker ',f lot I he result of evaluating loe. For insthm. . :, , l. above,
a more typical operation would be to use the current marker at tot'c,,

T': @OPtO FTR; P0
X>O

3

A i

wY

Note the sequencer semicolon. A sequence of commands is made into a command
(abbreviated corn) by enclosing it between parentheses (these are not mandatory at top
level.) Any command may be iterated n times by postfixing it with integer U. A star
means iterate until failure; for instance, U* brings the current marker to the top of the
tree it was pointing into. A primitive conditional statement is provided: ?eoml,com2
executes coral if the previous command succeeded, otherwise it executes com2. The
command $n exits from n levels of grouping; $-n is the same, but returns failure. There
are various other control statements such as a case statement, which we shall not discuss
here. The interested reader is referred to MENTOR's manual2]. Let us now turn to
the commands that modify asts.

The change command, loci C asM, replaces the subtree marked by locl with the
tree ast2. Like in Algol 60, a form of coercion is provided: When the second argument of
the change command is some location expression loc2, it denotes a copy of the subtree
marked by loc2. Various list manipulation commands, such as insert (1) and delete (D),
are provided. loci X loc2 exchanges the subtrees at loci and loe2 (provided they are
disjoint). All these operations maintain the correctness of sorts. Rather than giving an
exhaustive list, let up give a few examples:

? : TOP.?
?12 X 83
?82 01 1 83I
T83 C A.
(STAT] :Z:=O.. %colon is prompt for parseng;note x.he sort reminder
l81 X 023
ERROR: WRONG SYNTAX TYPE

It XO then
begin
Y:=Y*2;
P(X.A[Y.Z]);
X:=O
end else Z:=O

Let us finally explain an essential command: eval; E as. returns a copy of the tree
ast, in which metavariables are instantiated according to the current ervironment. The
eval command, together with pattern-matching, permits to implerrerb ,easily program
transformations that can be described as tree rewriting systems For instance, assume
we want to transform the operator > in the PASCAL eemple abcv into the operator
>---. Assuming the current marker is initially positioned at TOP, tI.e sinpkcat way of
doing this in MENTOL is as follows:
lrQTR; CLGEO; Pj
X>-O

?@GEQ P)X lihi. works because metaverisley match
*fXP)>.$EXP2

We have not explained so far how we dealt with comments, an nore generally with
pragmats and assertions. We have designed a general mechanism tha; t Yke comments
into account as a particular case of various possible annotations, mmzigfuily related

4

to program constructs. The idea is to attach attributes to any node of an sit. These
attributes are themselves asts in their own language. The Ioe expressions are extended
so as to access the various attributes of a given node and to get back from an ast to
the ast nodc it annotates, if any. For instance, in MENTOR-PASCAL, two attributes
are reserved for ordinary comments: the so-called prefix and postfix comments. These
simple comments have a rather poor structure: they may be just lists of lines. We
also use comments in PASCAL abstract syntax; for instance, when we optimise some
portion of program, we keep the initial version of the construct as a comment. The
system is extensible; for instance, we may declare a new abstract syntax for assertions,
and annotate various constructs with them, write in MENTOL a verification condition
generator that will compute from these assertions, etc.

If MENTOL consisted only in the features mentioned so far, the reader would
question our calling it a programming language, and would probably argue that is
is nothing more than an editor command language. What makes MENTOL a full-
fledged (although not general-purpose) programming language is the possibility to write
MENTOL procedures. We permit three kinds of procedure parameters:

a) locs passed by value;
b) locs passed by reference;
c) coms passed by name.

For instance a standard predefined procedure is FORALL, which takes two argu-
ments: a pattern, and a command. For every instance or the tiattern, starting from
the current rnarker and with a preorder tree traversal, it execute6 its %econd argument.
Various utilities procedures are predefined, to generate new identifiers,and provide coer-
cions mechanisms such as between identifiers, strings and comment lines. Finally stand-
ard system procedures are provided for file manipulation, interactive help and debugging,
etc.

This procedure encapsulation mechanism is essential to MENTOR. It allows the
designer of a programming environment to provide the user with powerful program
manipulations in terms of the logical constructs of the specific programming language
manipulated. These manipulations can be heavily context deperdent, and may use
semantic knowledge of the programming constructs, as opposed to the purely structural
context-free manipulations of the MENTOL primitives. Finally, it allows to build
extensible systems, in which the user constructs and maintains h'i' own environment
of procedures.

1.3 A PASCAL Programnmung Environment Based on MENTOR

MENTOR is a general system to manipulate structured infort;,'ai:.,n. HKwever from
the start we intended as its main application the realisation of an ioterart~ve pIrogram-
ming environment in which a programmer may design, implement, dociment, debug,
test, validate, maintain and transport his programs. Furth~rno:(- wt intended this en-
vironment to he realistic enough to help in implementing large Roftwzare oevelopments,
and provide a programming team with tools for specifying a design, enfr'rcing a program-
uuing methodology and verifying interfaces. Our intention when we etatted Lhe project,

5

s i

at the end of 1974, was to try and bridge the gap between on the one hand existing
programming tools such as debugging compilers, and on the other hand the vast amount
of theoretical research on semantics of programming languages. At the same time, we
did not want to commit ourselves to any currently proposed programming methodology
(top-down design, structured programming, etc.) or formalism (first-order assertions,
Hoare rules, modal logic), for which a wide consensus did not exist. Rather, we wanted
our system to be general enough to accomodate these various formalisms and provide
tools to implement the proposed methodologies. We chose to implement a PASCAL en-
vironment around the MENTOR system for several reasons. Most importantly, we had
chosen PASCAL as our system implementation language, and we wanted to implement
first the tools we needed ourselves in our development effort. We bootstrapped as soon
as the core of the system was implemented, and this may be one of the most important
practical decisions that forced us to focus on pragmatic issues.

The first step in this effort was the design of a structured editor for PASCAL pro-
grams, implemented in MENTOR-PASCAL. That is, we wrote a number of MENTOL
procedures that are the main user commands to construct and modify PASCAL pro-
grams and their documentation. Some of these procedures are used to move in the ast
of the program according to higher-level concepts. For instance, FPROC is used to
move to the top of a procedure; it first asks the user the name of this procedure. VAR
goes to the immediately surrounding variable declaration part, etc Other MENTOL
procedures effect simple program transformations. For instance, LABEL is used to label
a statement. It requprts the label name from the user, verifies that this label is neither
declared nor used in the current environment, declares it, and finally laibels thc statement
pointed to by the current marker. All these manipulations ate tran;parent to the user,
as long as no error condition occurs.

We then turned our effort to implementing tools for the normalization and documen-
tation of PASCAL programs. Normalizing programs consists of arranging them in a
standard, more readeable f3rm, while preserving semantic equivalen-e For instance,
declarations may be rearranged so that logically related items be declared in the same
area. Various cleaning-up operations are performed, to get rid of unne, essary structures
(empty statements, compound statements, etc.) This is especially important when a
series of program transformations have been applied mechanically, since often they are
easier to program with redundant structure. Of course none of these. s;nplifications
should get rid of commentF. Automatic documentation consist% of gr.erating romments
automatically at various standard places in the program, generating sropc structures,
cross-reference tables, etc. Some of these may involve complicated computations on the
program. The basic philosophy is that all generated documentation i0 itself structured,
so that it can be used by further processes. We do not elaborate ftirthe. oil normalization
and documentation of programs in MENTOR, and refer the interested reader to 16!.

Another area we started to investigate was an approach to delgging by source-
level program manipulation. The idea is that, instead of giving y.-,u r)un-time debugging
tools that have a more or less satisfactory user interface, we shall provide you with
special versions of your source program, with user interfaces built-in. You can compile
and run these special versions using your standard production compiler. 'or instance, a

6

procedure PROFILE allows you to compute an execution profile of your program as a
side-effect of your main computation. We think this area is worthy of more research.

The effort of designing and implementing a bona fide programming environment
based on MENTOR-PASCAL is still going on. Rather than listing in painstaking detail
all that is available to the user in the current state of the system, let us discuss what
is our idea of a satisfactory environment, and what problems we are encountering in its
implementation.

The main philosophy of our programming environment is to build specialised inter-
preters, that help the programmer by doing various computations and rearrangements
on his programs. All these interpreters communicate, between themselves as well as with
the user, through the abstract syntax of PASCAL and its annotations. The development
of a program is conceived as a multi-pass activity, each processor using as assumptions
the normalization and computations effected by the previous passes. For instance, the
acorrection" of a piece of program may be progressively checked/debugged according to
the following scenario:

* As soon as the program is input, it is correct as far as its context-free structure
is concerned, and this will be inforced by MENTOR's typing mechanism during any
further transformation.

* Then a "scoper" processes the program, checking for existence of dec)arations for
the various identifiers used in the program. This pass may be described as "computing
the lambda-calculus skeleton" of the program.

* When all names are linked to their proper declaration, it is easy to write a
type-checker, that will check for the correct typing of all the programming language
operations. This step is conceptually, and indeed in our scenario, implemented as, a
non-standard interpretation of the programming language constructs. A complete set
of MENTOL procedures for PASCAL scope and type checking has been developed, and
used to develop type-preserving manipulations in MENTOR-PASCAL1TJ.

* At this stage it is natural to check for run-time errors, termination, aliases. Here
we need much more semantic information. Most of the checks mentioned are undecidable
in general, but easy tufficient conditions are reasonable to implement. These checks can
be realized by the combination of specialized data-flow analysis roitires and a general
symbolic interpreter. A set of MENTOL procedures that check aliasing in PASCAL and
its application to proving sufficient conditions for a procedure to be free of Ride-effects
is described in 191.

* The hardest part of program verification remains. checkik,; *hat the program
actually corresponds to what the programmer expected. The traditional approach would
be to implement a debugging interpreter, which would et-cute dhre(tiy frem ti-e abstract
syntax and various other structures (symbol tables) constructed by thr above processes.
A more formal approach would request from the user to state formal gpecific ations, such
as first-order assertions, and to check the adequacy of the program with respect to its
specifications. For instance, verification conditions may be generated through symbolic
execution, and then input to a theorem prover. The formulas generated, as well as
the proof trees, would of course be in turn ast's manipulable by MENTOR; the user
could therefore monitor the proof with the same tools he is using for manipulating his

7

programs. This semi-automatei approach would alleviate the difficulty of having to
implement a completely automatic theorem prover, a task which- is still beyond the state
of the art. Another rigorous approach would be to process in MENTOR a complete
description of the semantics of the programming languag-, using for instance semantic
equations, and use it to translate a progr-Am into its dcnotation. This allows us to get
away from the idiosyncrasies of the particular progranmning language used and limit the
proofs to idrititics between mathematically well-understood concepts. Such a grandiose
meta-system could be conccived as essentially combining the capabilities of the SIS[L]
and LCFI51 systerais within MENTOR.

A similar scenario can easily be designed for program optimization: local optimisa-
tions are performed by program transformations, then more globai optimizations are
effected at the source level after doing the necessary computations by MENTOL pro.
cedures. The program is then compiled in an object code which has its own abstract
syntax. Final Gptirnizations are performed by transformations on the object code.

The general strategy behind a programming environment as sketched above is to
effect successive refinements or, the original program, by going from the simpler, better
understood tasks, to, the more sophisticated and costly verifications. However, only a
small fraction of ',h,- above ambitious plan has been actually implemented in MENTOR-
PASCAL. There are niostly two reaons for this, which are actually cnmplementary
aspects of the same r,'s,'nomenon

1) Even th" easiest and mo~t natural program transformation- arc l.ard to imple-
mient in a totally -afa w , in the current state of baroqueness of programming languages.
For instance, it is impossible in PASCAL to separate scope-ch-ckir.g from typc-checking
because of the with construct The lack of orthogonality of the l:nguage makes it a
complex and costly process to do but the most trivial program transformations. For
instance, replacing tail recursions by gotos in recursive procedures with call-by-value
arguments represents about 200 lines of MENTOL procedures. Again. the a~srnmption
must be made (arid .-hnckpd) that no with statement occurs.

2) The more mundane transformations have proved to be challerigirt,- znd interest-
ing research problems Their careful implementation is often cru ial, sitce many com-
putations involved turn out to be very time consuming. An espe-iallv irite".tinm area of
applications iq the transport of programs. Our largest application ,, fN, k i to transport
MENTOR from its original IRIS 80 implementation to its PDP IK v- on, Tr:* is per-
formed in a corn p!etelv mechanical manner by a set or MEN'fOP 7n,,-d'.1eF '!his way
any new release of M7 NTOR can be followed (after a few hours nf ,orioutation) by a
release of a totally compatible PDP 10 release.

The conclusion w draw from this state of affairs :, that. no ,o-,Y satisfactory
programming envir-onm;nt will erist for ugly languages. On the ot,r n.,td, , is clear
that purely applicative languages are not about to be widely accepted; ini th,-' real world
of programming, complex data structures with sharing and compler cc ,.trol s~ructures
and parameter passing mechanisms are thef rule rather than the exenti.n,. We are not
arguing in favor of simplistic toy-programming languages, o l the point is rai her that
the study of program transformations provides interesting gnide.i,.s Ir 'he d,,sign of
future programming languages. As might be expecteo, these desig,, * r.t.. ia ar closely

8

related to those based on semantic considerationslO. We have good hope that the state
of affairs will improve with the advent of new programming languages whose design will
have benefited from programming languages semantics research and experience gained
with systems such as MENTOR. A positive step in this direction has been taken with
the ADA language development, since the design of the language included a formal
semantics definition. It is interesting to note that this formal semantics is based on a
MENTOR-compatible abstract syntax definition.

2. The Main Design Decisions in MENTOR

2.1 The abstract syntax

The notion of abstract syntax is familiar to any compiler writer. It is a tree-like
representation of the structure of programs. Operators of the abstract syntax are the
basic building blocks of the language. We want to strongly emphasise that abstract
syntax is NOT parse trees. It is indeed very different conceptually, although our trees
can be obtained by collapsing and normalizing parse trees. Rlere are a few important
differences:

1) Lists are represented as one list node, not as binary trees
2) The reserved words of the language occur as node labels, not as leaves
3) Non-terminals of the grammar do not generate nodes. Certain correspond to

sorts, others do not appear at all. For instance, an identifier may occur directly as
an expression, the intermediate levels of parsing such as simpleexp, factor, term being
collap;ed.

4) Parentheses are NOT part of the structure, they are generated optionally by the
unparser if the context requires it, because of precedence reasons for instance.

Point 3 is particularly important: every node of the abstract syntax leaves a con-
cretely visible mark in the print-out, and this is a big help for the user going up and
down the tree. This makes MENTOR significantly different from previous structured
editors such as Hansen's, where the user moved around in his program with the help of
grammar menus.

Point 4 is important too. For the MENTOR user an .xp is an exp. Precedence
relations are left for the unparser to worry about. For instance, with the example above:

?OTOP FOUULT; 81C&,)
[EXP] :Y+1 ;
?U; P)
Y:=(Y+I)*2

Similarly, the problem of PASCAL's dangling else completely vanishes.

9

YOTOP 82 C&v %we change the then part of an It

[BTAT] :IF Y<X THEN X:=Y,) %into a conditional statement

TOTOP P?
if X>O then

if Y<X then X::Y else %note the extra else generated
else Z:=O

MENTOR trees are not LISP trees either. Even for the LISP language, the
coding of programs as binary trees with atom leaves is rather remote from the abstract
structure of the program. Also points I and 2 above apply. Our structure is much

richer structurally; for instance, in MENTOR-PASCAL, we have about 100 operators,
whereas LISP structures have only one (cons). For these reasons, we consider MENTOR
significantly different from say the INTERLISP editor.

So much for the choice of the general formalism of abstract syntax. Of course
for each particular language there is a certain degree of freedom in the design of the
particular operators and sorts. As we mentioned above, it is crucial that almost every
operator add some concrete representation to the unparsing of a piece of program. An
important, but not mandatory, requirement is that the unparsing of an operator should
not depend too much on the context in which it occurs. This requirement is met by most
operators is MENTOR-PASCAL, except that certain nodes are sometimes surrounded
by parentheses according to the context. There are mostly two occurrences of this
phenomenon:

a) parentheses surrounding list nodes may change with the contxt. For instance,
an Istat is usually unparsed as a compound begin end, except. when appearing as
the loop of a repeat.

b) parentheses may be needed for precedence, or danjling structures such as shown

above for the else. Our unparser always generates the minimum number of parentheses

needed for a correct parsing. This is the only normalization (besides indentation of
course) that is completely automatic and over which the user has no control.

When designing an abstract syntax for a specific languago, th- following trade-off
occurs. Various constructs of the language may be represented by t:e same concrete

strings. Now there is a choice as to whether you want to separat.e these two constucts
as two distinct operators, or if you want to merge them into one. The maximum
discrimination has the advantage that your structurp will have a Ftir .prain; for instance,
you will catch by the find command instances of one construct ini.!pendently from
instances of the other. On the other hand, certain program trfo'to". will be

harder, and the user has more constructs to learn. For instance, should parameter
declarations use the same construct as variable declarations? As might be expected,
referential transparency and orthogonality are important propprties for a programming
language to possess for a completely satisfactory design of its abstrcart syntax.

We feel that allowinig arbitrary annotations of nodes by abstract synta.x trees in

specialized language, was an important design decision Th;s makes our sys teri open
ended to various developments, without interfering with the tools aieadyv designed: a
given interpreter may have access to certain annotations, the others beig invisible. For

instance, certain annotations are comments for the user to see. Others may be pragmats

10

IL AL

for the compiler, specifications in some formal language for use by a verifier, data
structures for control flow analysis, original code commenting some optimised sections,
example runs, assertions for run-time checks, etc. It is important that there various
structures do not interfere with one another and with the program itself.

It may be appropriate to discuss here why we decided to stick to trees, and not go
to more complicated graph structures, such as (shared) dags or control flow graphs. The
main reason is that we know how to keep the integrity of these context-free structures
in an incremental way For instance, we could imagine keeping the programs correct
according to the full PASCAL syntax, including type checking for instance. But,
aside from the fact that it would be a lot more costly to maintain all the information
needed for checking this correctness during the edition of the program, this would have
the additional (and to our opinion insuperable) drawback that it would preclude the
development of programs but in the most awkward fashion.

2.2 MENTOL

MENTOL is our tree-manipulation language. The above description of its main
commands gives a flavor of MENTOL programming. The saient features of the language
are:

a) it is an interactive language, used for editing; but it may also be used to program
lenghty batch computations.

b) it is not applicative; MENTOL constructs divide into expressions, that are simply
evaluated for their result, and commands, which have various side effects.

c) it is a specialized language, for manipulating trees; it has no pretense of being
general-purpose, although it has rudimentary arithmetic capabilities.

d) it has reasonably good user interaction facilities: there are various debugging
aids osuch as a trace package, an interrupt facility, and the user may execute in coroutine
with programs, a very handy feature for "controlled" program manipulation.

e) MENTOL has its own abstract syntax. It is therefore possible to edit and develop
MENTOL programs under MENTOR. Actually a standard facility exists to go back and
forth between a PASCAL editing session and a MENTOL editing environment, in which
the (advanced) user may modify his PASCAL manipulation programs

f) File manipulation primitives are provided. Several formats of files are known to
MENTOR: standard text files, that may be input (through parsing) and output (through

unparsing). Tree files, that keep asts from one session to the next without the need to
reparse. MENTOL files, containing MENTOL procedures, and a special case of which
is used as the initialisation file, loading a specific user's editing prelude.

Pattern matching deserves a little discussion. As we already insisted, pattern
matching is a fundamental operation in MENTOL. The user may cortruct any tree
pattern, i.e. any ast with metavariables occurring anywhere. However, metavariables
may occur in only one occurrence. This condition is required because of th,. side-effects to
the corresponding markers. Note that this is not really a restriction, since a primitive is
provided for testing equality of trees. No list metavariables are provideo at the moment,
because associative pattern matching is a complicated operation (a tree may match a

11

pattern in more than one way if such list variables are allowed), and because it was never
strongly felt as desirable, except probably for orthogonality. But we want to stress the
considerable pattern matching capability we have in MENTOR, as opposed say to string
searching in a more conventional editor. Anybody who tries to trace uses of identifier I
in his program (as opposed to all occurrences of character 1, in other identifier$, reserved
words, strings and comments!) will understand this point. Furthermore the MENTOL
pattern matching is fast, because types are used to focus the search on the relevant part
of the trees. For instance, MENTOR knows that in PASCAL statements are disjoint
from declarations, and may not occur in expressions. It will therefore focus the search
for a statement on a narrow region in the program tree (and of course comments will not
get in the way either). We may therefore argue that tree pattern matching is actually
faster than string pattern matching. We believe this is one of the main arguments for
having typed rather than untyped structures.

It is clear that MENTOL is not the last word in tree- manipulation languages.
However, we wanted to acquire a reasonable amount of experience with writing program
transformations in MENTOL before drawing definite conclusions about such languages.
All in all, MENTOL has well served its purpose: it is easy to learn, it is fairly easy to
debug, it is fast enough for editing. However long MENTOL procedures are hard to
read, and a compiler is clearly needed for complicated transformations done in batch
mode.

2.3 A special word for screen editor fans.

One of the most commonly heard criticisms of MENTOR is that it should be
possible to edit programs on your screen in the same way as for instance with the EMACS
editor. We do not believe that this would be an easy task, and we do not even think
that such a facility is really desirable.

The first point concerns portability. In the initial MENTOR design, we had planined
to define a screen as partitioned between several areas, and to have the text under the
current marker represented specially on the screen. We went as far as implementing
these displays, but then changed our minds, mostly because it was very hard to distribute
our system. We reverted to teletype-compatible output. MENTOR can be transported
to any machine with any interactive operating System (modulo the PASCAL transport
problems, of course). No special terminals are needed, but of course the system will be
more pleasant to use if the rate of transmission is higher, so that it is not too costly to
have the current marker expression printed often.

The second point concerns the difficulty to maintain two Fieparate representations.
Remember, the text printed on your screen is nowhere kept; it is just computed on
demand by the prettyprinter. The ability to manipulate screen images would force us to
keep the printed text internally, and to try and link it to the corresponding St. After
some modification is effected on the screen, the parser would have to be called in action
to validate the changes before updating the tree accordingly. The difficulti-2s may not
be insurmountable, but it is not clear that the end result would be worth the effort.

12

Finally, a major drawback of mixing structured editing and display editing is that
the user would have to learn how to use two command languages instead of one. We
believe that most users would stick to either mode, but would not like mixing them.

Conclusion

MENTOR hag bpcn used for most of its own deveiopment arid mainitenance. Various
groups at INRIA use MENTOR as their main programming tool for developing i ASCAL
programs. MENTOR hai been dibtributed in various research and teaching institutions.
In particular, it is being used at Universiti de Toulouse for teaching programming in
PASCAL. Using MENTOR requires some training. It seems that in the average a
PASCAL programmer needs about a week to get accustomed to this new world of trees.
Past this period, few return to the standard 4ools.

It is our thesis that using an abstract manipulation system as the core of i progrt.
ming environment is a good paradigm. However, it is very important that the user may
correspond to the system through the concrete syrtax he is ued to: he ghould be able to
visualize his trees with unparsing, and conversely input his progar:. t ,X, W:th parsing.
The abstract syntax manipulation language should have a powerful procedure abstrac-tion mechanism, permitting to extend the system at will with complicated semantic

checking, such as data flow analysis and ultimately formal proofs. It is important to be
able to manipulate structured annotations, linked to the structure of the program, but
conceived as separate entities and not as extensions to the user's programming language
syntax. We envision a satisfactory programming environment as unifying under a com-
mon set of tools the whole range of a programming team's activity: design, development,
documentation, debugging, maintenance and transport. However the long range goal of
software reliability will be attainable only when new programming languages, designed
along sound semantic principles, will be available.

Acknowledgments

MENTOR was designed and implemented at IRIA by the authors of tnib Paper.
Various other people have been involved occasionally in the MENTOR project. V. ('har.
J.J. L4vy, B. MAlse, E. Morcos-Oury. Y Sugito.

References

1. Donseau-Gouge V., Hue, G., Kahr, G., Lang B. and L4v) . J A Stru iuft I,-41-rJ
Program Editor a First Step Towards Computer Assitted Prograrrmsng. "t t.,-
national Computing Symposium 1975, Antibes, France. Also Rapport Labori* ,- 4.
Avril 1975, IRIA.

2. Donseau-Gouge V , Huet G., Kahn c,. and Lang b. 'he MENTOt lser Martui.
Available from INRIA, Rocquencourt France.

":L*

3. Donseau-Gouge V., Huet G., Kahn G. and Lang B. Introduction au eytzme
MENTOR et a ee applicatione. Actes des Journees Francophones our Is Certifica-
tion du Logiciel, Genive, Janvier 1979.

4. Donseau-Gouge V., Huet G., Kahn G. and Lang B. 7he MENTOR ,ogram Mani-
pulation System. In preparation.

5. Gordon M., Milner R., and Wadsworth C. Edinburgh LCF. Report CSR-11-TT,
Computer Science Department, Edinburgh University, 1977.

6. Kahn G. Normalisation e1 documentation des programmes. Note technique, Mai
1978, IRIA.

T. Ml&se B. Manipulation des programmes Pascal au niveau des concepts du langage.
Thise de 36me cycle, Universiti d'Orsay, Juin 1980.

8. Mosses P. SIS - Semantics Implementation Setenm. Reference Manual and User
Guide. Report DAIMI MD-30, Computer Science Dept., Aarhus University, Aug.
1979.

9. Morcos-Oury E. Etude des effete de bord des appele de procedure et de fonctions
dans 1. langage PASCAL. Thise de 3Mme cycle, Universitd Paris XI, Oct. 1979.

10. Tennent R.D. Language Design Methods Based on Semantic Principlee. Acta,
Informatica 8 (1977), 97-112.

14

L4

DATI--

ILME

